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AN ANALYSIS OF THE TRANSIENT SOIJDIFICATION OF A FLOWING WARM LIQUID ON A CONVECTIVELY COOLED WALL 

by Robert Siege1 and Joseph M. Savino 

L e w i s  Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

ABSTRACT 

A study is  mde of the  frozen layer t h a t  forms when a w a r m  l iqu id  flows over a f l a t  p l a t e  that i s  
cooled below the  freezing temperature of the  l iqu id  by a coolant flowing along the other s ide  of the p la te .  
Three ana ly t ica l  procedures a r e  employed and compared f o r  accuracy and convenience i n  application. 
an i t e r a t ive  procedure, yielding three ana ly t ica l  closed-form solutions,  each successive solution being a 

t i on  f o r  evaluation. 
growth can be made. 

(D One i s  N 
0 m more accurate, higher order approximation. The two other ana ly t ica l  procedures require numerical integra- 

w I Numerical r e su l t s  a r e  presented graphically so tha t  rapid estimates of frozen layer 

AUSZUG 

Die Studie befasst  s ich  m i t  der e r s t a r r t en  Schicht die en ts teh t  wenn eine warme FlL'ssigkeit Eber 
eine flache P la t t e  f l i e s s t  und diese P la t t e  durch ein KLhlrnittel an der Unterseite auf den Gefrierpunkt 
der betreffenden FlGssigkeit gebracht wird. Die drei vewendeten analytischen Methoden werden in  Bezug 
auf Genauigkeit und Bequemlichkeit der Anwendung verglichen. 
und l i e f e r t  d re i  analytische LEsungen in  geschlossener Form, i n  denen jede Folgende eine genauere 
Anngherung e iner  hb'heren Grb'ssenordnung i s t .  
numerische Integration zur Auswertung. 
her rasches Absch'a'tzen des Wachstums der e r s t a r r t en  Schicht mb'glich. 

Eine von diesen dre i  Methoden ist i t e r a t i v  

Die beiden anderen analytischen Methoden erfordern 
Numerische Ergebnisse werden graphisch darges te l l t  und rnachen da- 

AHHOTAJJKR 

INTRODUCTION 

This paper is concerned with the  t rans ien t  
so l id i f i ca t ion  of a warm flowing l iqu id  that is i n  
contact with a w a l l  that is cooled below the freez- 
ing point of t he  l iqu id  by a coolant flowing on 
the  opposite side. This type of so l id i f ica t ion  
?mh1+11? n r i n ~ s  in important and familiar applica- 
t i ons  such as continuous casting of metals and 
freezing of r ivers .  
the  present study is concerned with a number of 
advanced propulsion devices t h a t  u t i l i z e  l iquid- 
l i qu id  heat exchangers i n  which the  coolant is at a 
temperature below the  freezing point of the  warm 
l iqu id .  If the  temperature o r  flow r a t e  of the  

on the  exchanger w a l l s .  The prevention of serious 
flow blockage by excessive so l id i f ica t ion  requires 
an understanding of the  t rans ien t  formation of the 
Solid layer  on the  exchanger walls. 

mater ia l  has been the  subject of considerable math- 
ematical analysis f o r  two reasons. The f irst  is 
because of its p rac t i ca l  importance i n  applications 
such as mentioned above. The second is t h a t  t he  
problem o f fe r s  a challenge f o r  mathematical study 
because the  l iquid-solid interface is a moving 
boundary, which provides a nonlinear mathematical 
condition. Exact ana ly t ica l  solutions f o r  the 
t r ans i en t  frozen layer thicknesses and heat t rans-  
f e r  are usually d i f f i cu l t  t o  obtain except fo r  
boundary conditions of cer ta in  types. 

The application tha t  motivated 

l iqu id  is low enough, a frozen layer w i l l  form 

The phenanenon of freezing (or  melting) of a 

This has led 

t o  the s i tua t ion  where i n  some instances physically 
unrea l i s t ic  boundary conditions have been imposed 
i n  order t o  achieve a mathematical solution. Some 
exact solutions f o r  conditions of p rac t i ca l  impor- 
tance a re  summarized by C a r s l a w  and Jaeger [1]1. 
No attempt w i l l  be made here t o  review the  mathe- 
matical bibliography which is not d i r ec t ly  perti- 
nent t o  the  present study. 
provide various matnematicai rneiiiuirs aii:. Pi-;? l i n t c  
of references a re  given by [2-51. 

found, numerical or approximate methods must be em- 
ployed. Murray and Landis [6 ]  devised a numerical 
f i n i t e  difference technique and demonstrated it f o r  
two sample problems. 
lumped-parameter method, wherein a l l  the  heat ca- 
pacity is lumped a t  the center of the  frozen mate- 
rial. A heat balance in tegra l  approach was demon- 
s t ra ted  on a var ie ty  of freezing and melting prob- 
lems by Goodman [ E ]  where the  temperature d is t r ibu-  
t i on  i n  the material  was approximated by a second 
o r  t h i r d  order polynomial t o  evaluate the  i n t e s a l s  
of the conduction equation. 
i t e r a t ive  technique t o  f ind  the  frozen hyer thick- 
ness and heat transfer i n  metal castings with and 
without accounting fo r  the  conduction in to  the  
mold. This method does not involve any approxima- 
t ions  i n  principle,  but provides an approximate re -  
s u l t  because i n  some instances only the  f i r s t  
i t e r a t ion  can be conveniently carried out i n  
analytical  form. 

A few references which 

When an exact ana ly t ica l  solution cannot be 

Cochran [ 7 ]  developed a 

Adams [91 employed an 

'Number in  brackets denote references. 
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The model chosen f o r  study here i s  a one- 
dimensional so l id i f ica t ion  of a l iqu id  that flows 
over one side of a th in  f l a t  w a l l  (Fig. 1). 
other side of the w a l l  i s  being convectively cooled 
by a f lu id  t h a t  is at  a temperature below the 
frsezing point of t he  l iquid.  The w a l l  on which 
the l iqu id  so l id i f i e s  i s  assumed t o  be sufficiently 
th in  so t h a t  the heat flow needed t o  subcool the  
wall during the  t rans ien t  i s  negligible compared 
with the  heat flow though  the wal l .  
i s  comprised of the  l a t en t  heat of fusion, the sub- 
cooling heat capacity of the frozen layer,  and the 
convection a t  the so l id i f ied  interface.  

Three ana ly t ica l  methods w i l l  be employed. 
two of these the t rans ien t  heat conduction equation 
which governs the ener@;y balance within the solid- 
i f i ed  layer has been integrated i n  a general way t o  
provide an expression f o r  the frozen layer growth as 
a function of time. The general integrated equation 
i s  evaluated fo r  the  present problem by using a 
method of successive ana ly t ica l ly  i te ra ted  approxi- 
mations and a l so  by using an approximate temperature 
p ro f i l e  of the  type proposed by Goodman [e]. The 
former technique has been u t i l i zed  i n  a different 
manner by Adms [91 f o r  some other problems. The 
ana ly t ica l  approximations a re  carried out here in  an 
improved manner so that higher order solutions can 
be found, and an analytical expression very close t o  
an exact solution i s  obtained. The t h i r d  analytical  
method i s  one proposed by Goodman [E] where a heat 
balance at  the  frozen layer-liquid interface is 
used. The methods a re  compared with regard t o  accu- 
racy and ease of application. One of the closed 
form solutions represents fo r  a l l  prac t ica l  purposes 
the  exact solution and is used t o  evaluate the f ina l  
r e s u l t s  that a re  presented i n  graphical form. 

The 

This heat flow 

For 

ANALYSIS 

The model chosen f o r  t h i s  study is the  one- 
dimensional configuration shown i n  Figure 1. 
l iquid  a t  a fixed temperature TZ flows over one 
s ide  of a th in  plane w a l l  providing a constant con- 
vective heat t ransfer  ccefficierrt hi .  A coolant a t  
a fixed temperature Tc flows over the opposite 
s ide  of the  p la te  providing a constant convective 
heat t r ans fe r  coefficient hc. A t rans ien t  so l id i -  
f i ca t ion  process can then be in i t i a t ed  i n  a number 
of ways such as by reducing the  temperature or the 
flow r a t e  of the  warm liquid,  introducing the cool- 
an t  if it had not been flowing, or lowering of 
t he  flowing coolant. 
w a l l  t o  fur ther  cool u n t i l  the  freezing temperature 
i s  reached on the  surface of the  p la te  exposed t o  
the w a r m  l iquid.  
since the  spec i f ic  heat of the  w a l l  has been ne- 
glected,  a l i nea r  temperature d is t r ibu t ion  w i l l  
e x i s t  i n  t he  p la te  as shown i n  Figure 1, and solid- 
i f i c a t i o n  is assumed t o  begin. 

As the  so l id  layer on the w a l l  increases in  
thickness,  heat is being extracted *om the boundary 
layer  of t he  warm l iqu id  and is transferred by con- 
vection t o  the  l iquid-solid interface.  There it 
cmbines with the  l a t en t  heat released by the Solid- 
i f i c a t i o n  process and is conducted through both the 
frozen layer  and cold wall t o  the  w a l l  surface in 
contact with the  coolant, where it is convectively 
removed. An addi t iona l  mount of heat removal is  
needed t o  subcool the  frozen layer, and t h i s  i s  also 
transferred t o  the  coolant ( the heat remoml neces- 
sa ry  t o  subcool the  w a l l  is neglected i n  comparison 
with the  other heat flows). The so l id  layer con- 
t i nues  t o  grow u n t i l  it achieves a steady-state 

A w m n  

Tc 
These changes w i l l  cause the 

A t  t h i s  ins tan t  (T = 0, X ( T )  = O), 

thickness X,. Constant properties a re  assumed 
throughout the  analysis.  

Steady-State Thickness of Frozen Layer 

In  many so l id i f ica t ion  problems the frozen 
layer never approaches a steady-state thickness; 
ra ther  it continues t o  propagate with time in to  the  
l iquid.  When, however, the  l iqu id  flowing over the  
frozen layer is a t  a temperature above the freezing 
point, t he  frozen layer w i l l  achieve a steady-state 
thickness. This thickness w i l l  be used as a r e fe r -  
ence length i n  the  l a t e r  analyses of growing layers 
and hence w i l l  be separately derived here. 

It i s  assumed that the l iquid-solid interface 
at  the boundary of the frozen layer i s  at  the  
freezing temperature Tf. I f  the  heat flow is 
taken as  posit ive in  the  posit ive x direction, 
the convected f l u x  from the l iqu id  t o  the l iquid- 
so l id  interface is 

-q = hz(TZ - Tf) E constant 

Using the overa l l  heat t ransfer  resistance between 
the l iquid-solid interface and the  coolant gives 
the  r e l a t ion  

This is solved f o r  t he  steady-state thickness 

For X, = 0, Equation (1) gives the re la t ion  be- 
tween variables required t o  ju s t  avoid freezing. 
For example, solving for  Tl gives 

T, - T- 

In  order t o  prevent freezing the  l iqu id  temperature 

2 v e n  by Equation ( 2 ) .  
must be equal t o  o r  greater than the  value 

Cezers l  E c p z t i m ~  for !?own Tsyer Growth and 
Temperature Distribution 

The heat flow within the  frozen layer is 
governed by the  t rans ien t  heat conduction equation, 

k - = p c  a2T al! 
ax2 P 57 ( 3 )  

Equation (3)  is  integrated from any position 
within the  Layer t o  the  solid-liquid interface 

x 
X 

A t  the interface the  heat conducted in to  the  solid- 
i f i ed  layer is equal t o  t h a t  supplied by the  l a t en t  
heat of fusion and the  convection f r o m  the  flowing 
l iquid,  

(5)  
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Equation (5) i s  substi tuted in to  Equation ( 4 )  t o  
give 

(6)  
The term on the l e f t  side is the  heat flow crossing 
any posit ion x at any time T .  The last term on 
the  r igh t  i s  the heat removed t o  subcool the  portion 
of the  so l id i f ied  layer between x and X. The in- 
tegra t ion  of Equation ( 6 )  from the  wall (x = 0)  t o  
any position x r e su l t s  i n  an expression f o r  the 
instantaneous temperature d is t r ibu t ion  

To eliminate the variable T2 which is a func- 
t i on  of time, Equation ( 6 )  is writ ten at x = 0 t o  
give the  heat flow at  the w a l l ,  and t h i s  is equated 
t o  the heat flow through the w a l l  and in to  the cool- 
an t ,  

q(X = 0)  = -pL - hz(Tz - Tf)  
dT 

X 
+ P c p d  $ a x = - -  T2 - Tc (e)  I+a 

hc kw 

Then Equation (8) is solved fo r  TZ and substituted 
i n  Equation ( 7 )  t o  give 

A s  a consequence of the nondimensionalization it is 
noted t h a t  two parameters S and R have appeared. 
Their physical significance is discussed i n  the 
section RESULTS AND DISCUSSION. 

By applying the  ru les  f o r  d i f fe ren t ia t ing  
under an integral ,  the  in tegra l  terms of Equa- 
t i o n  (10) can be transformed so t ha t  the  derivative 
i s  taken outside the  in tegra l  signs, and Equa- 
t i o n  (10) becomes 

By reversing the order of integration, the double 
in tegra l  i n  Equation (ll) can be transformed in to  
equivalent single integrals.  
by first writ ing the  double in tegra l  i n  terms of 
dununy variables of integration q and p as 
follows : 

This i s  accomplished 

r *X 

Equation (9)  i s  then placed in dimensionless form 
by l e t t i n g  

a,, and T'  = (T  - Tf)/(Tc - Tf) 
t i o n  (1) i n  the form 
(Tf - Tc) = R!(1 + R )  

x' = x/Xs, X '  = X/Xs, T' =hZ(TZ - Tf)T/ 
and using Equa- 

(XshZ/k) (TI - Tf)/  

6"' 4'' T'(x',X') dx' dx' 

t o  give 

where X' is t rea ted  as a constant. Reversing the  
order of integration leads t o  

so that ax' lx' T'(x',X') dx' dx' = ax' x'T'(x',X') dx'  + x' 4'' T' (x ' ,X ' )  d x '  

Equation (11) then takes the  form 
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For convenience l e t  I (x ' ,X ' )  E 1 ax' T' dx' 

+ x '  Lx' T' dx'  + x'T' dx'  and note that 6"' 
aI/&' = (aI/ax')(dx' /d.c ') .  
t i o n  (13) takes the  f o m  

A s  a re su l t ,  Equa- 

When Equation (14) i s  evaluated at  the  solid-liquid 
interface x' = X' ,  there r e su l t s  

where 

solving Equation (E)  f o r  dx'/dT' gives 

Separating the  variables and integrating yields 

When the  f i r s t  in tegra l  on the  r igh t  i s  evaluated 
and the  second in tegra l  i s  integrated by parts, the 
f i n a l  expression f o r  T '  = ~ ' ( x ' )  is 

T '  -1.' - 1+R (1 - X ' )  + 
R 1 

This i s  the  expression that w i l l  be used t o  compute 
the  frozen layer thickness as a function of time. 
Since G ( X ' )  contains the  temperature distribution, 
t h i s  d i s t r ibu t ion  is omained ?rum E q ~ t i o i i  (14) 
with Equation (16) used t o  eliminate d x ' / d ~ ' .  The 
final r e l a t ion  f o r  the temperature d is t r ibu t ion  i n  
the  frozen layer becomes 

and 

Equation (19)  is an inte-a1 equation f o r  the  
temperature T ' (x ' ,X ' ) .  To solve Equation (le), 
Equation (19) hust f i r s t  be solved so tha t  t h e  
in tegra ls  t h a t  comprise G i n  Equation (18) can 
be evaluated. Two methods f o r  carrying t h i s  out 
w i l l  be examined here. 

The f irst  method, and ult imately the more ac- 
curate of the  two, is an i t e r a t ive  technique where- 
by the integrals i n  I and G a re  evaluated using 
temperature d is t r ibu t ions  t h a t  a re  obtained from 
successively be t t e r  approximations of Equa- 
t ions  (19). It appears that t h i s  procedure w i l l  
ultimately lead t o  an exact solution. 
ond method Equation (19) i s  not used. 
the  temperature d is t r ibu t ion  t o  be used i n  
Equation (18) i s  approximated by a second order 
polynomial with coefficients t h a t  a re  evaluated 
using the physical conditions a t  the boundaries of 
the frozen layer.  
ature prof i le  does not a r i s e  from the  energy equa- 
t ion ,  the second method cannot yield an exact solu- 
t ion .  The two methods a re  outlined i n  the next 
sections. 

In the  sec- 
Instead 

G(X) of 

Since t h i s  approximate temper- 

Solution by Analytical I terations2 

An i t e r a t ive  procedure has been u t i l i zed  by 
Adams [ 9 ]  f o r  some so l id i f ica t ion  problems, and 
before discussing the  present method, a few com- 
ments a re  i n  order. When Adams' procedure was ap- 
plied t o  the  present problem, the  first i t e r a t ion  
(second approximation) resulted in  a cumbersome 
quadratic equation f o r  dx'/d.r'. After solving the  
quadratic equation, a numerical integration was 
required t o  determine X ' ( T ' ) .  A second i t e r a t ion  
would have been extremely d i f f i cu l t .  Hence an a l -  
ternate approach was devised i n  which higher order 
i t e ra t ions  could be ana ly t ica l ly  obtained thereby 
leading t o  more accurate r e su l t s .  These w i l l  now 
be presented. 

d i s t r ibu t ion  and growth times is found by neglect- 
ing the e f fec t  of heat capacity within the  frozen 
layer. When the  cp becomes zero, the parameter 
S = 0, and Equations (18) and (19)  reduce t o  

A first order approximation t o  the  temperature 

A second approximation f o r  T' and 
T '  = .'(XI) was obtained by subs t i tu t ing  Equa- 
t i o n  (21)  f o r  Ti i n  Equations (18) and (19)  with 
the S terms now retained. After the  integrations 
i n  I(x ' ,X')  and 
can be simplified t o  

G(X ' )  a re  performed, the r e su l t s  

'This w i l l  be referred t o  later as method "AI" 
(Analytical I t e r a t ion ) .  
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where 

When the  procedure i s  repeated, that is, when Equation (23 )  i s  substi tuted in to  Equations (18) and (19), 
the t h i r d  approximation r e su l t s ,  which is the final approximation evaluated here, t ha t  is ,  

R ( l  - X ' e )  [' + RX'5 + RS 'lI][ R ( l  - X ' )  ] 
1 + R  1 + W '  + R S Y I I  

';I1 = 1 + R 

where 
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at interface 

(D cu 
0 
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at fixed x as 
interface moves 
across t h a t  x 

I w 

x r Z R ( 1  - X ' ) ( l  + Rx')  - (1 + Rx')21 - R ( l  - X ' ) ( l  + FX1)' + Rx')2 + R'S % + 2x' + 
(R L J 

No attempt w a s  made t o  ana ly t ica l ly  evaluate the 
in tegra l  i n  Equation (26) as there  did not seem t o  
be any advantage t o  doing so  because of i t s  alge- 
bra ic  complexity. Since the en t i re  equation was t o  
be evaluated on a d i g i t a l  computer, t he  integration 
was performed numerically. 

It i s  obvious from the  complexity of the  tem- 
perature d is t r ibu t ion  Equations (27 )  t o  (31) that a 
four th  ana ly t ica l ly  determined approximation would 
be almost impossible t o  carry out. 
shown, a four th  approximate solution is unnecessary 
because the  A I  method converged rap id ly  with the 
f irst  three  approximate solutions. 

As w i l l  be 

Equation (5) i s  modified in  order t o  express it 
en t i r e ly  i n  terms of T, without dX1d.c appear- 
ing, by using the  following r e l a t ion  which can be 
writ ten f o r  any location in  the  frozen layer:  

A t  the  ins tan t  when t h e  interface moves through 
posit ion x, x = X, ax1d.r becomes dx/dT, and the  
derivative dT/dT = 0 since the  interface i s  al- 
ways a t  Tf. Then 

Approximate Solution by Prescribed Temperature 
Method3 

The basic expression (Eq. (18)) that predicts 
the dimensionless growth times T' f o r  a layer of 
thickness X '  contains integrals,  i n  the function 
G, of t he  instantaneous temperature d is t r ibu t ions  
i n  the  frozen layer. Because the  temperature d is -  
t r ibu t ions  appear as integrands, the  growth time 
T '  
dis t r ibu t ion .  Therefore, using a reasonable ap- 
proximation f o r  the  temperature prof i le  should r e -  
sult i n  f a i r l y  accurate predictions for  
T '  = . ' ( X I ) .  This idea was f b s t  applied t o  prob- 
lems of freezing and melting by Goodman [e]. 

For the  present problem, the  temperature pro- 
f i l e  within the  frozen layer i s  approximated by a 
second order polynomial of the form 

is not very sensit ive t o  the  exact shape of the 

T' = A(X' - x ' )  + B(X'  - x') '  (32) 

Equation (32 )  already s a t i s f i e s  the  boundary condi- 
t i o n  that the  temperature is equal t o  Tf a t  t he  
l iqu id-so l id  interface. Two additional boundary 
conditions a re  used to evtliuaie A and E. ! k c  
boundary condition at  the  wall i s  tha t  the  follow- 
ing heat balance be sa t i s f ied :  

which has the  dimensionless form 

(33) -pl &' = R[T'(x' = 0)  - 11 
X'=O 

Substi tuting Equation (32) in to  Equation (33) pro- 
vides the  condition 

-A - ZX'B = R(AX' + BX" - 1) (34) 

The second boundary condition i s  a t  the l iquid- 
so l id  in te r face  and i s  given by Equation (5).  

'This w i l l  be referred t o  l a t e r  as method "Fl"' 
(Prescribed Temperature). 

This i s  used t o  eliminate from Equation (5)  

$1 
dT 

= - e q- Ix + h l  - (Tz - T f )  
k 

X ax 
Ix 

If the re la t ion  &I!/& = (k/pcp)(d2T/axz) from the  
conduction equation is used, t h i s  boundary condi- 
t i o n  can be rearranged into 

(qJ = - 

I n  dimensionless form it becomes 

(35) = _ -  

X '  

The temperature p ro f i l e  (Eq. (32)) is substi tuted 
in to  Equation (35), and the r e su l t  i s  rearranged 
in to  

which gives B when A is known. Equations (34) 
and (36) a re  solved simultaneously t o  yield A 

1 + Rx' 

2 



$T' - 
- 1 + R axi2 

a?' = - -- X a T '  
ax '  

7 

(41) 

u) 
N 
0 
M 

w I 

The coefficient A is the root of a quadratic 
equation, and the  posit ive sign i n  f ront  of the  
square root  w a s  chosen so that A would approach 
the  proper l imi t  as steady s t a t e  i s  achieved. 
l imi t  is found by rea l iz ing  t h a t  t he  steady-state 
temperature prof i le  i n  the  frozen layer must be 
l inear  and hence f r o m  Equation (32),  B(X '  -t 1) = 0. 
Then fran Equation (36) ,  A(X' -t 1) = R / ( 1  + R ) ,  
which is a l so  the l imi t  of Equation (37). 

Equations ( 3 6 )  and (37) give A and B as  
exp l i c i t  functions of 
d i s t r ibu t ion ,  Equation ( 3 2 ) ,  is given as a func- 
t i o n  of X '  and x'. The temperature d is t r ibu-  
t i o n  i s  then used t o  evaluate the integrals i n  
Equation (18) 

The 

X' ;  hence, t he  temperature 

The quantity G ( X ' )  is 

while the  quantity 

( 3 9 )  

has t o  be integrated numerically because the  
and B contained i n  G a r e  very complicated func- 
t ions  of X'.  Equation ( l e )  is then evaluated t o  
give the  time required t o  form a thickness of 
frozen layer,  T' = ? ' ( X I ) ,  f o r  any values of the  
parameters R and S. 

With A and B known as a function of X' 
and hence as a function of ?', the temperature 
p ro f i l e  i n  the  frozen layer  can be evaluated at 
any time during the  layer  growth from Equation 
( 3 2 ) ,  which can a l so  be placed i n  the  form 

T' = AX' (1  - E )  + B X 1 2 ( l  - 

A 

(40) 

Determination of Frozen Layer Growth bx 
Integyating Heat Balance a t  Liquid- 
Solid 1nterface4 

This a l te rna te  approach suggested by 
Goodman [ 8 ]  begins with the  interface condition 
t h a t  follows Equation (34) 

R S A  

The quantity B i s  eliminated by using Equa- 
t i on  ( 3 6 ) ,  and the  variables a re  then separated. 
The r e su l t  i s  integrated t o  y ie ld  

This 
and 
t i on  
tu re  

J O  

was integrated numerically f o r  various R 
S using A as a function of X' from Equa- 
(37). As i n  t he  previous method, the  tempera- 
d i s t r ibu t ion  is  found from Equation (40) with 

B obtained from Equation (36). 

RESULTS AND DISCUSSION 

Significance and Ranges of Parameters and 
Dimensionless Variables 

The subcooling parameter S E cp(Tf - T,)/L 
appears because of t he  manner i n  which spec i f ic  
heat term w a s  nondimensionalized in  the  basic 
equations. Although t h e  numerator c,(Tf - Tc) is 
the  maximum in te rna l  energy tha t  coula be removed 
i f  a uni t  m a s s  of the so l id i f ied  material were sub- 
cooled from the  freezing temperature t o  the  lowest 
temperature i n  the  system T,, the  parameter does 
not give any indication of how much subcooling is  
actually experienced by the  frozen layer. As t he  
coolant temperature approaches absolute zem, S 
increases t o  a maximum value. For many materials 
employed i n  engineering practice such as molten 
metals and water, the  maximum S is approxi- 
mately 3. 

The parameter R (ls;/k)/ll/hc) + (a/$fl 
i s  a r a t i o  of heat flow resistances. "he K / k  is  
the  resistance offered by the  steady-state thick- 
ness of t he  frozen layer,  while (l /hc) + (a/$) is 
the  resistance offered by the  w a l l  and the  convec- 
t i v e  coefficient on the  coolant s ide  of the w a l l .  
Since the  thickness X, can be very th in ,  t he  
value of R can approach zero. For la rge  X, o r  
i f  hc i s  l a ree  and a/k, small, R can be very 
large; hence, R can range from zero t o  inf in i ty .  
To a id  the c l a r i t y  of t he  discussion and the  
physical understanding of the  reader, it is con- 
venient t o  regard the parameter R as a measure 
of t he  steady-state frozen layer thickness 
f o r  fixed values of he, a, k, and kw. 

The steady-state frozen layer  thickness X,  
i n  Equation (1) depends on the  many independent 
variables i n  the system. For example increasing 
the  l iqu id  temperature T i ,  the  l i qu id  heat t rans-  
f e r  coefficient h2, o r  the  coolant temperature 
T,.; o r  decreasing the coolant side convective coef- 
f i c i e n t  h, all decrease the  steady i ce  layer 
thickness. The dimensionless instantaneous so l id i -  
f i e d  thickness X' = X/Xs varies by def in i t ion  
from zero t o  unity. 

X, 

The dimensionless time given by 

?hz(T2 - Tf) 

0% 
T' = 

4This w i l l  be referred t o  later as method 
"IT" (Interface).  
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is the  r a t i o  of two heat flow quantit ies.  
Thz(T2.- T f )  i s  the  t o t a l  heat convected from the  
w a r m  l lqu ld  t o  the  surface of t he  frozen layer  dur- 
ing the  time T. The pL& is  the  amount of 
l a t en t  heat t h a t  i s  removed t o  form the  steady- 
s t a t e  frozen layer. A l a rge  T' indicates tha t  
t h e  heat convected t o  the  frozen layer by the  warm 
l iqu id  has been large compared with the  heat of 
so l id i f ica t ion .  

The 

Comparison of Solutions 

Figure 2 shows the  growth of t he  so l id i f ied  
layer  as predicted by four d i f fe ren t  equations pre- 
sented i n  the  analysis f o r  several  values of the 
parameters R and S > 0. Also included are re- 
sults f o r  the  case where the  subcooling i n  the 
frozen layer  i s  neglected, S = 0 as computed from 
Equation (20). 
curves where R = 0.01 which corresponds t o  th in  
frozen layers.  In the  limit when heat capacity i s  
neglected, S = 0, all the  solutions obtained from 
Equation (18) a re  i n  agreement, by definit ion,  with 
t h a t  given by Equation (20) .  When S is increased 
t o  i t s  maximum prac t ica l  value of 3, all of the 
solution methods a re  i n  agreement and are only 
s l i g h t l y  removed from the  S = 0 curve. 

layer (R = 10). The curves f o r  S = 3 represent 
t he  extreme case of large heat capacity e f fec ts  
coupled with a th ick  frozen layer and provide t h e  
m a x i m u m  deviation between the  calculation methods. 
One of t he  most s ign i f icant  findings i s  the  very 
close agreement between the  second and th i rd  
ana ly t ica l  i t e ra t ions  (curves  AI^^'' and  AI^^"). 
This ind ica tes  t ha t  the  th i rd  i te ra t ion  has con- 
verged very close t o  the  f i n a l  solution. This w i l l  
a l so  be  shown by the  temperature distributions 
which w i l l  be given i n  Figure 3. 
t i c a l  purposes the th i rd  i t e r a t ion  can be regarded 
as t he  correct solution. 
scribed temperature prof i le  (ET curves) i s  i n  very 
good agreement with the  analytical  i t e ra t ions ,  and 
hence the  prescribed temperature method can a l so  be 
used with good accuracy f o r  the  present problem. 
The in te r face  method ( IF  curves) deviates somewhat 
from the  other methods, but a t  a given T' s t i l l  
provides X' values within 5 percent of the cor- 
r ec t  solution. Fine r e ~ o i i  f o r  t h i s  .leT.dzt.ion 
Stems from the  f a c t  t ha t  the  growth t i m e s  are re- 
l a t ed  t o  the  f i r s t  and second partial derivatives 
Of t h e  temperature at the  interface (Eq. (41)). 
For t h e  IF method these derivatives a re  obtained 
from the  approximate temperature p ro f i l e  (Eq. (32)) 
r a the r  than from a solution of the  energy equation 
as i n  t he  AI method. 

F i r s t  consider the  lower s e t  of 

The upper s e t  of curves are f o r  a th ick  frozen 

Hence f o r  prac- 

The method using a pre- 

Temperature Distributions Within Freezing Layer 

A few temperature d is t r ibu t ions  within the  
freezing layer  a re  shown i n  Figure 3. 'Ihe dimen- 
s ion less  temperature i s  shown as a function of po- 
s i t i o n  within the  layer  f o r  four d i f fe ren t  dimen- 
s ion less  layer  thicknesses. An in te res t ing  char- 
a c t e r i s t i c  i s  t h a t  all the  temperature profiles are 
fairly close t o  being l inear .  The heat convected 
by the  w a r m  l i qu id  t o  the  interface combined with 
the  l a t e n t  heat of fusion tha t  a l so  a r i s e s  a t  the 
interface,  i s  conducted through the  frozen l w e r  
and tends t o  es tab l i sh  a l i nea r  temperature pro- 
f i l e .  
t o  produce a curved profile.  

The heat capacity of the  layer  however tends 
m e  f a c t  tha t  most of 

t he  temperature prof i les  a re  nearly l i nea r  suggests 
t h a t  the  subcooling energy is  s m a l l  compared with 
the  convective and l a t en t  heats at  the  frozen layer  
interface.  

Figure 3(a) shows the  temperature distribu- 
t ions  as computed by various methods fo r  a large 
value of both R and S. The rapid convergence of 
t he  successive ana ly t ica l  i t e r a t ion  solutions (AI) 
i s  demonstrated. The difference between t h e  tem- 
perature d is t r ibu t ions  f o r  t h e  second and th i rd  
i t e r a t ions  i s  very small. It appears t h a t  a fourth 
approximation would be indistinguishable from the  
t h i r d  approximation and would have an insignificant 
e f fec t  on the  frozen layer  growth curves i n  Fig- 
ure  2. 
temperature (ET) and in te r face  integration (IF) 
methods a re  not too f a r  removed from the analytical  
i t e r a t ion  profiles,  
the  agreement of all the  methods i s  improved as 
e i the r  S or R is made smaller. 

The prof i les  evaluated from the prescribed 

Figures 3(b) and ( c )  show how 

Solidification Times as a Function of R and S 
Parameters 

While a l l  the  solutions agree well with the  
t h i r d  analytical  i t e r a t ion  which is taken t o  be the  
correct solution, they vary considerably i n  t h e i r  
form and d i f f i cu l ty  of evaluation. The simplest 
solution is Equation (20) f o r  t he  S = 0 condi- 
t ion ,  but its range of application is r e s t r i c t ed  t o  
small R values as indicated by Figure 2 .  The 
second ana ly t ica l  i t e ra t ion ,  Equation ( 2 2 ) ,  is  
qui te  accurate for  all ranges of R and S and 
has a form tha t  can be eas i ly  and quickly evaluated 
even on a desk calculator i f  necessary. The t h i r d  
A I ,  FT, and I F  solutions all require a d i g i t a l  com- 
puter for  t h e i r  evaluation. For these reasons the 
second AI solution is the  most convenient analyti-  
ca l  form given here f o r  use in  engineering applica- 
t ions.  
presented were evaluated from the  th i rd  A I  solu- 
t i on  (Eq. (26)) .  

I n  Figure 4 is  presented the  dimensionless 
time T' against  R with S as a parameter. 
Each group of curves gives the  7 '  required t o  
form a given frozen layer  thickness 

A t  each X' it i s  in te res t ing  t o  note the  be- 
havior of t he  group of curves as R becomes s m a l l .  
All the  curves f o r  
3 = 2,  ..L<-L - ~ " ~ ~  wIILLL. IyL.u.I t ha t  the pffect of heat capacity 
tends t o  become negligible as R diminishes. A 
s m a l l  R means t h a t  the temperature drop across 
the  frozen layer  i s  small compared with the  t o t a l  
drop across the  w a l l  resistance and convective re- 
sistance on the  coolant side. This means t h a t  f o r  
s m a l l  R t he  ac tua l  frozen layer subcooling is  a 
s m a l l  pa r t  of the  m a x i m u m  possible subcooling 
Tf - T,. Hence the  e f fec t  of the  S parameter 
dies away at small R. 

X', the  T' is  greater as S is  increased from 0 
t o  3. 
can be made concerning the  subcooling of the  frozen 
layer. The f i r s t  observation is  tha t  when the  heat 
capacity i s  not included i n  an analysis of a grow- 
ing frozen layer,  serious errors can r e su l t  i n  the  
predicted growth times. This conclusion w i l l  be 
shown as follows by comparing, f o r  a fixed R, t w o  
cases, one where t h e  spec i f ic  heat i s  neglected so 
tha t  S = 0, and another where S > 0. Under these 
conditions a l l  the  conditions such as the  h2, hc, 
TZ,  T,, k, h, &, remain the  same f o r  both cases. 
The r a t io s  of the  times T' and T f o r  S = 0 

The graphical r e su l t s  which w i l l  now be 

X'. 

S # 0 approach the  curve f o r  

As R becomes la rge  it is  seen t h a t  fo r  any 

From t h i s  f a c t  two important observations 
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and S > 0 a re  then equal; t ha t  is, 

From Figure 4 it i s  found t h a t  t he  5' r a t i o  is 
always grea te r  than unity and hence ' c p  ' '"P'O. 
Thus, a simplified analysis neglecting heat capac- 
i t y  w i l l  always lead t o  predicting growth times T 
t h a t  a r e  too  short. 

The second observation i s  tha t ,  when t h e  heat 
capacity is properly accounted for ,  t he  dimensional 
t i m e  T does not increase as T '  increases when 
the  S parameter of t he  frozen layer i s  increased. 
I n  f a c t  t he  opposite is generally true, T de- 
creases. For a given solidifying material S is 
increased by lowering the  coolant temperature 
A lower coolant temperature, however, increases 
the  so l id i f i ca t ion  r a t e  which more than compen- 
sa t e s  fo r  the  increased heat capacity tha t  must be 
removed. This w i l l  now be discussed i n  more de- 
ta i l .  

frozen layer thickness X,. For a given l iqu id  
where L, cp, and Tf are assumed constant, an in; 
crease i n  S is accomplished by lowering the  cool- 
anttemperature TF. Then since R depends on 
X,, and Xs contains the r a t i o  (Tf - T c ) /  

hz(T2 - Tf),  t he  quantity hz(Tz - T f )  must be pro- 
portionately increased t o  keep X, unchanged. If 
S is increased from % t o  S2, then 

T,. 

Consider a fixed R and a fixed steady-state 

Using t h e  def in i t ion  of the  dimensionless time re- 
sults i n  

From Figure 4, it is  found t h a t  fo r  any 
r a t i o  Sz/S1 is  always la rger  than ??/Ti so tha t  
i2 < rl. 
l aye r  of a specified steady-state thickness is be- 
ing formed i n  a given l iqu id ,  the  layer  w i l l  grow 
f a s t e r  as the  coolant temperature Tc is  decreased 
even though the  subcooling of the frozen layer  is 
thereby increased. 

Another fea ture  of Figure 4 is  t h a t  f o r  any 
given X' t he  5 '  is  essent ia l ly  no longer de- 
pendent on R when R > 100. This implies t h a t  
f o r  l a r g e  R's, the  combined thermal resistance of 
t h e  w a l l  on which the  layer  i s  formed and the cool- 
an t  convective res i s tance  is  negligible when com- 
pared t o  t h a t  of t he  frozen layer. 
quence, the  instantaneous frozen layer  thickness 
i s  governed so le ly  by the  degree of subcooling i m -  
posed on the  layer. This is shown by the  follow- 
ing simple re la t ion  derived from the  second ap- 
proximate i t e r a t i v e  solution (Eq. ( 2 2 ) )  by taking 
a l i m i t  as R -. m 

X/& the 

The c ~ i i c k s i o n  Is that .,hen E f r o z e n  

As a conse- 

where the  expression i n  parentheses i s  the  S = 0 
solution, Equation ( 2 0 ) ,  for  large R. A compari- 
son of Equation (43) with Figure 4 shows t h a t  the  
equation f i t s  t he  curves quite well f o r  R > 100. 
As a consequence, t he  fac tor  (3  + S ) / 3  represents 
a correction fac tor  t h a t  can be used t o  ge t  rapid 
estimates f r o m  the  S = 0 solution f o r  R > 100 
and 0 5 s 5 3. 

One important aspect of Figure 4 is  its use- 
fulness i n  making rapid estimates of the  thickness 
X against  time T f o r  any given R and S. To 
i l l u s t r a t e ,  consider a given l iqu id ,  coolant, and 
w a l l  material where t h e  properties a re  knom and 
the  T2, T,, hZ, h, a r e  specified. With this 
information given, t h e  quantit ies R and S can 
be calculated. Then from Figure 4, the  T' values 
can be found by simple interpolation f o r  each X' 
shown. Having obtained values of T '  against  X', 
t he  re la t ion  between dimensional 7 and X can 
eas i ly  be calculated from the  definit ions of T' 
and X'. 

CONCLUDING 

The goal of t he  analysis w a 6  t o  develop a 
means for predicting the t rans ien t  growth of t he  
frozen layer  t h a t  forms when a flowing w a r m  l iqu id  
is i n  contact with a cold f l a t  p l a t e  t ha t  i s  con- 
vectively cooled on the  opposite side. This goal 
w a s  achieved by employing two basic approaches t o  
the  problem: 
tegrating the  t rans ien t  conduction equation over 
t he  en t i re  frozen layer  thickness and ( 2 )  a heat 
balance at the  frozen layer-l iquid interface.  

ness and time variable,  the frozen layer growth 
can be expressed as a function of two parameters. 
One parameter provides a measure of the  m a x i m u m  
possible subcooling energy of the  frozen layer as 
compared with the  l a t en t  heat of fusion. 
ond is the  r a t i o  of the  heat flow resistance of t he  
steady-state layer,  t o  the  combined resistance of 
t he  w a l l  and convection coefficient on the  coolant 
side.  

From t h e  two ana ly t ica l  approaches f i v e  solu- 
t ions  were developed, four from the  f i r s t  approach 
and one from the  second. Al l  solutions except one 
gave accurate predictions of thickness against time 
f o r  all values of t he  parameters. !Fhe one excep- 
tic3 :?% n E c ?  f n r  Q P I ~  t h i n  frozen layers where 
subcooling w a s  unimportant, as t h i s  solution had 
neglected the  heat capacity of the  frozen layer. 
O f  the  accurate solutions,  two t h a t  were analyti-  
ca l ly  derived successive i t e r a t ions  were the  most 
convenient t o  use and the  most precise. The form 
of one of these i t e r a t i v e  approximations w a s  suf- 
f i c i en t ly  simple t h a t  it could eas i ly  be evaluated 
on a desk calculator. The other, f r o m  which the  
graphical results were prepared, appeared well con- 
verged t o  the  correct solution. 

conclusions. 
frozen layer  during its formation slows the growth 
r a t e  subs tan t ia l ly  f o r  some conditions. This i s  
par t icu lar ly  t r u e  of th ick  layers.  The second is  
t h a t  t he  temperature prof i les  i n  the  frozen layer 
were found t o  be almost l i nea r  at  all t i m e s .  This 
suggests t h a t  the  energy required t o  subcool the  
frozen layer  i s  much l e s s  than the  combined convec- 
t i v e  and l a t en t  heat passing through the  layer. 
Lastly, the ana ly t ica l  i t e r a t ive  technique developed 
here resulted i n  a rapidly converging means f o r  
solving the nonlinear t rans ien t  freezing problem. 

(1) a growth re la t ion  obtained by in- 

By use of a proper dimensionless layer  thick- 

The sec- 

The results of t h i s  analysis l ed  t o  several 
The f i r s t  i s  t h a t  t he  subcooling of a 
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NOMENCLATURE 

A coefficient of linear term in Eq. (32) 
a thickness of cooled wall 
B coefficient of quadratic term in Eq. (32) 
cp specific heat of solidified material 
h convective heat transfer coefficient 
k thermal conductivity of solidified material 
kw thermal conductivity of w a l l  
L latent heat of fusion 
9 heat flux in x direction 
R 

S 
T 
T' 

I 
W 

X 
X' 

XS 

X' 
5 
P 

? '  

? 

dimensionless parameter: 

dimensionless parameter: cp(Tf - Tc)/L 
temperature 
dimensionless temperature, 

thickness of frozen layer 
dimensionless thickness of frozen 

thickness of frozen layer at steady state 
position coordinate in frozen layer 
dimensionless coordinate, Jx, 
dimensionless coordinate, X/X 
density of solidified material 
time 
dimensionless time, ?h2(T2 - Tf)/pq 

(Xs/k)/ Dl/h,) + (a/k.)] 

(T - Tf)/(Tc - 4) 

layer, x/xS 

Subscripts: 

C refers to coolant 
f at freezing point 
2 
2 
I,II, successive iterative approximations 

liquid phase of solidifying substance 
interface between frozen layer and wall 
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Fiqure 1. - One-dimensional model of transient solidification of 
a warm liquid on a convectiveiy cooiea pi&. 
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Figure 2. - Comparison of methods for predicting t h e  instantaneous thickness 
of the  frozen layer. (Some curves dotted for clarity only. ) 
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Figure 3. - Temperature distributions in frozen layer com- 
puted by various methods. (Some curves dotted for clarity 
only. 1 
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Figure 4. - Dimensionless growth times against the  thermal resistance Parameter for various dimensionless thicknesses and subcooling 
parameters. 
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(b) S - 1, 2, and 3. 

figure 4. - Concluded. 


